

Agithar Kick-Off Meeting

Mediterranean Conference Center October 7-9, 2019, Valletta, Malta

• Roberto Basili and the TSUMAPS-NEAM Team

The NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

Co-funded by the European-Union Civil Protection Mechanism

Agreement Number: ECHO/SUB/2015/718568/PREV26

TSUMAPS-NEAM project objectives:

- produce the first region-wide long-term homogenous time-independent PTHA from earthquake sources for the NEAM coastlines;
- trigger a common tsunami risk management strategy in the region.

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region

NEAMTHM18

Basili, and 39 coauthors (2018) http://doi.org/10.13127/tsunami/neamthm18.

http://www.tsumaps-neam.eu/neamthm18/

NEAMTHM18 Portfolio

- Hazard curves calculated at 2,343 POIs (North-Eastern Atlantic: 1,076; Mediterranean Sea: 1,130; Black Sea: 137) at an average spacing of ~20 km.
- For each curve, values for mean, 2nd, 16th, 50th, 84th, 98th percentiles.
- Probability maps for MIH 1, 2, 5, 10, 20 meters;
- Hazard maps for ARP 500, 1000, 2500, 5000, 10000 years
- Map displays for mean, 16th, 84th percentiles.
- Interactive Hazard Map and Curve Tool
- Comprehensive **Documentation** with two review reports (352 pp.)

By-products

- Database of pre-calculated tsunami scenarios for over 120,000 elementary sources for c. 30 Tb, covering an area of c. 6x10⁶ km²
- Hazard calculation platform
- Amplification Factors

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region

Strengths & Opportunities

- Relies on robust data and methods from previous EU projects
- Community-based effort
- Ensemble uncertainty modeling
- Multi-expert integration process for managing epistemic uncertainty
- Independent external review

Ready to be used as...

- …reference in National PTHA mapping
- ...support for the definition of evacuation zones for Tsunami Warning Systems
- ...developing guidelines and standards for tsunami hazard and risk at global scale

Weaknesses & Threats

- Regional scale not suitable for local assessment, NEAMTHM18 is not a replacement for local/national assessments
- Seismic source discretization (position, parameters) is very coarse
- POIs discretization is coarse (c. 20 km)
- Amplification factors as proxy for inundation
- Use of expected values from empirical relationships
- Inhomogeneous catalogs of earthquakes, focal mechanisms, faults, subduction zones
- Earthquake rates only from catalogs for crustal sources; geodetic/geologic rates for few selected faults only
- ... and once again, <u>only earthquake sources were</u> <u>considered!</u>

- Adopt data and methods from recent European Projects (ASTARTE, SHARE, STREST)
- Treatment of all seismic sources without pre-selections
 Probabilistic approach
 - → Earthquakes possible everywhere
- Use of all the available information

 Well-known sources received special treatment
 Controlled simplifications according to scale and computational feasibility
- Quantification of the epistemic uncertainty
 > Variability within scientifically acceptable models
 > Community distribution and ensemble model
- Transparent treatment of subjectivity of choices
 Multiple-Expert Management Protocol

- Hazard assessment: STEPS & Levels workflow -

Seismic sources: input data

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region

70°N

- 60°N

- 50°N

40°N

- 30°N

- 20°N

10°N

0°

Seismic sources: input data

SHEEC-EMEC time span • 1000-2006 (Stucchi et al., 2012; Grünthal & Wahlström, 2012)

60°N

30°N

20°N

70°N

60°N

50°N

20°N

10°N

- ISC (ISC, 2016) time span • 1900-2015
- GCMT (Dziewonski et al., 1981; ٠ Ekström et al., 2012)
- RCMT (Pondrelli & Salimbeni, • 2015)

Slabs and main plate boundaries

Slab complex 3D geometries

- EDSF (Basili et al., 2013) ٠ DISS 3.2.1 (DISS WG, 2018)
- PB2002 Bird (2003)
- SLAB 2.0 (Hayes et al., 2018) ٠
- CAS (Maesano et al., 2017)

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region www.tsumaps-neam.eu

70°N

Background Seismicity (BS)

The BS seismicity modeling type is meant to capture all the seismicity for which there is a low level of knowledge, including the smaller earthquakes of interest and deals with faults characterized by the largest variability.

Predominant Seismicity (PS)

The PS seismicity modeling type is meant to capture the larger earthquakes generated by rather well-known major faults, e.g. plate boundaries and, particularly, subduction zones.

Seismic sources: earthquake rates

-3 70 り 22 ₹∖ -4 60 -5 50 -og annual rates -6 40 Lat -7 30 Å -8 20 ন্দ -9 10 -10 20 -30 -20 -10 10 30 40 0 Long

Smoothing method adopted from Hiemer et al. (2014)

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region www.tsumaps-neam.eu

Seismic sources: earthquake rates alternative model for PS

b = 0.70, 0.95, 1.20 c = 0.2, 0.6, 1.0 Mx = 8.0, 8.6, 9.1 Data of convergence rates, b-value, coupling, and Mmax from Davies et al. (2018)

Truncated MFD model from Kagan (2002)

GPS velocities in the Hellenic Arc, figure from Ganas and Parsons (2009)

Seismic sources: rupture models - scaling

Map distribution of the fault scaling relations

- LE14: Leonard (2014)
- ST10: Strasser et al. (2010)
- MU13: Murotani et al. (2013)
- INT = interplate
- SCR = stable continental region
- INF = slab interface

Faulting mechanisms of crustal faults are assigned based on moment tensors and fault data. Only reverse slip faulting applies to subduction interface.

BS + PS far-field sources:

use "classical" propagation Green's functions from unit slip on planar fault segments **PS near-field sources:** 3D Geometry Stochastic Slip Shallow slip Depth-dependent rigidity

$M_w > 8.5 - k^{-2}$ slip distributions

Seismic sources: rupture models – planar vs 3D geometry

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region www.tsumaps-neam.eu * * * * * * * * * Serra et al. (in prep.)

South Coral Patch Ridge Fault Rupture model:

- strike 63° dip 22° rake 94°
- LxW 35x13 km, Z 6.6 km, slip 2 m
- Mw 7.5

Seismic sources: rupture models – heterogeneous slip distribution

Hints for the AGITHAR Working Groups

SSHAC guidelines: "CBR of the ITC"

"Regardless of the scale of the **PSHA** study the goal remains the same: to represent the **center**, the **body**, and the **range** that the larger **informed technical community** would have if they were to conduct the study" (NUREG/CR-6372).

- Earthquake rates and spatial distribution from smoothed seismicity only for BS
- Rupture scaling relationships used as "expected values" only
- Planar geometry for ruptures on BS
- Uniform slip distribution for ruptures on BS

- Adopt tectonic/geodetic rates for crustal earthquakes (BS)
- Increase variability of rupture scaling
- Extend the approach used for PS (3D geometry and heterogeneous slip) to as many crustal faults as possible

EU Projects

- TRANSFER (2006-2009)
- SHARE (2009-2012)
- STREST (2013-2016)
- ASTARTE (2013-2017)
- EPOS-IP (2015-2019)
- SERA (2018-2020)
- CHEESE (2019-2022)

AGIIHAR

Promote/improve data

acquisition

and developments of

methods

Identify most critical

datasets and parameters

for site/area/application

of interest

Evaluate epistemic and aleatory uncertainties Perform hazard study (considering uncertainties)

> EU DG-ECHO Project • TSUMAPS-NEAM (2016-2017)

Perform deaggregation and sensitivity to evaluate impact of individual datasets and parameters

The virtuous

circle of

hazard

analysis

Institut National de la Meteorologie

TSUMAPS-NEAM Probabilistic Tsunami Hazard Maps for the NEAM Region www.tsumaps-neam.eu

